If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+44t+4
We move all terms to the left:
20-(-16t^2+44t+4)=0
We get rid of parentheses
16t^2-44t-4+20=0
We add all the numbers together, and all the variables
16t^2-44t+16=0
a = 16; b = -44; c = +16;
Δ = b2-4ac
Δ = -442-4·16·16
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{57}}{2*16}=\frac{44-4\sqrt{57}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{57}}{2*16}=\frac{44+4\sqrt{57}}{32} $
| -2y-20=+2y+20 | | ((-4.8)+1.4)*(-1.3)=x | | 49-30/k=49 | | -2x.358=2000 | | 3z+3=1 | | 4-3+4n=22+4n | | -(b-8)=-8(b+1)+7b | | X3-9x+1=0 | | x+12=220 | | -5y-20=y-30 | | 60=4(k+3)+2(k+3) | | ((-4.8)+1.4)=x | | -2(2p+5)=-6(p+1) | | 1/4x3/x=0.5 | | 1/4=3/x=0.5 | | 4x-8=122° | | 60x10=0.6 | | 60x^2+30x=0 | | 7k-32=+7 | | 7x-9/2+3x-2/5=-9 | | 10x+8=12+8x | | 10(-7+5v)=-14-6v | | 3.9/2.6=6.2/y= | | 8x/2+20=36 | | x-36=-17 | | 7484/w=36 | | 11y=21 | | -6y+24=0 | | 11/21=y/7 | | 10d+36=–24 | | 7+3*x=35 | | 8x+10=134-2x |